翻訳と辞書
Words near each other
・ Veda (NZ)
・ Veda Ann Borg
・ Veda Beaux Reves
・ Veda bread
・ Veda Brown
・ Veda Hille
・ Veda och Mörtsal
・ Veda Panchakarma Hospital & Research Institute
・ Veda Sastry
・ Veda Shook
・ Veda Slovena
・ Veda Wright Stone
・ Vedachhi
・ Vedaclidine
・ Vedad
Vector flow
・ Vector Foiltec
・ Vector Graphic
・ Vector graphic synth
・ Vector graphics
・ Vector graphics (disambiguation)
・ Vector graphics editor
・ Vector Group
・ Vector group
・ Vector Group (disambiguation)
・ Vector Informatik
・ Vector inversion generator
・ Vector Laplacian
・ Vector Limited
・ Vector logic


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Vector flow : ウィキペディア英語版
Vector flow

In mathematics, the vector flow refers to a set of closely related concepts of the flow determined by a vector field. These appear in a number of different contexts, including differential topology, Riemannian geometry and Lie group theory. These related concepts are explored in a spectrum of articles:
*exponential map (Riemannian geometry)
*
*matrix exponential
*
*exponential function
*infinitesimal generator (→ Lie group)
*integral curve (→ vector field)
*one-parameter subgroup
*flow (geometry)
*
*geodesic flow
*
*Hamiltonian flow
*
*Ricci flow
*
*Anosov flow
*injectivity radius (→ glossary)
==Vector flow in differential topology==

Relevant concepts: ''(flow, infinitesimal generator, integral curve, complete vector field)''
Let ''V'' be a smooth vector field on a smooth manifold ''M''. There is a unique maximal flow ''D'' → ''M'' whose infinitesimal generator is ''V''. Here ''D'' ⊆ R × ''M'' is the flow domain. For each ''p'' ∈ ''M'' the map ''D''''p'' → ''M'' is the unique maximal integral curve of ''V'' starting at ''p''.
A global flow is one whose flow domain is all of R × ''M''. Global flows define smooth actions of R on ''M''. A vector field is complete if it generates a global flow. Every vector field on a compact manifold without boundary is complete.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Vector flow」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.